wiz-icon
MyQuestionIcon
MyQuestionIcon
8
You visited us 8 times! Enjoying our articles? Unlock Full Access!
Question

Construct a 3×4 matrix whose elements are given by
(i)aij=12|3i+j|

(ii)aij=2ij.

Open in App
Solution

The order of given matrix is 3×4, so the required matrix is A=a11a12a13a14a21a22a23a24a31a32a33a343×4, where aij=12|3i+j|.
Putting the values in place of i and j, we will find all the elements of matrix A.

a11=12|3+1|=1,a12=12|3+2|=12a13=12|3+3|=0,a14=12|3+4|=12a21=12|6+1|=52,a22=12|6+2|=2a23=12|6+3|=32,a24=12|6+4|=1a31=12|9+1|=4,a32=12|9+2|=72a33=12|9+3|=3anda34=12|9+4|=52
Hence, the required matrix is A=⎢ ⎢ ⎢112012522321472352⎥ ⎥ ⎥3×4

Here, A=a11a12a13a14a21a22a23a24a31a32a33a343×4, where aij=2ij
a11=21=1, a12=22=0a13=23=1 a14=24=2a21=41=3, a22=42=2,a23=43=1, a24=44=0a31=61=5, a32=62=4,a33=63=3, and a34=64=2
Hence, the required matrix is A=1012321054323×4


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon