Construct a 3×4 matrix whose elements are given by
(i)aij=12|−3i+j|
(ii)aij=2i−j.
The order of given matrix is 3×4, so the required matrix is A=⎡⎢⎣a11a12a13a14a21a22a23a24a31a32a33a34⎤⎥⎦3×4, where aij=12|−3i+j|.
Putting the values in place of i and j, we will find all the elements of matrix A.
∴a11=12|−3+1|=1,a12=12|−3+2|=12a13=12|−3+3|=0,a14=12|−3+4|=12a21=12|−6+1|=52,a22=12|−6+2|=2a23=12|−6+3|=32,a24=12|−6+4|=1a31=12|−9+1|=4,a32=12|−9+2|=72a33=12|−9+3|=3anda34=12|−9+4|=52
Hence, the required matrix is A=⎡⎢
⎢
⎢⎣112012522321472352⎤⎥
⎥
⎥⎦3×4
Here, A=⎡⎢⎣a11a12a13a14a21a22a23a24a31a32a33a34⎤⎥⎦3×4, where aij=2i−j
∴a11=2−1=1, a12=2−2=0a13=2−3=−1 a14=2−4=−2a21=4−1=3, a22=4−2=2,a23=4−3=1, a24=4−4=0a31=6−1=5, a32=6−2=4,a33=6−3=3, and a34=6−4=2
Hence, the required matrix is A=⎡⎢⎣10−1−232105432⎤⎥⎦3×4