aij=12|−3i+j|,i=1,2,3andj=1,2,3,4∴a11=12|−3×1+1|=12|−3+1|=12|−2|=22=1a21=12|−3×2+1|=12|−6+1|=12|−5|=52
a31=12|−3×3+1|=12|−9+1|=12|−8|=82=4
a12=12|−3×1+2|=12|−3+2|=12|−1|=12
a22=12|−3×2+2|=12|−6+2|=12|−4|=42=2
a32=12|−3×3+2|=12|−9+2|=72
a23=12|−3×2+3|=12|−6+3|=12|−3|=32
a33=12|−3×3+3|=12|−9+3|=12|−6|=62=3
a14=12|−3×1+4|=12|−3+4|=12|1|=12
a24=12|−3×2+4|=12|−6+4|=12|−2|=22=1
a34=12|−3×3+4|=12|−9+4|=12|−5|=52
Therefore, the required matrix is
A=⎡⎢
⎢⎣152412232032312152⎤⎥
⎥⎦
(ii)
aij=2i−j,i=1,2,3andj=1,2,3,4
∴a11=2×1−1=2−1=1
a21=2×2−1=4−1=3
a31=2×3−1=6−1=5
a12=2×1−2=2−2=0
a22=2×2−2=4−2=2
a32=2×3−2=6−2=4
a13=2×1−3=2−3=−1
a23=2×2−3=4−3=1
a33=2×3−3=6−3=3
a14=2×1−4=2−4=−2
a24=2×2−4=4−4=0
a34=2×3−4=6−4=2
Therefore, the required matrix is
A=⎡⎢⎣135024−113−202⎤⎥⎦