Constructing Perpendicular to a Line through a Point on the Line
Construct a c...
Question
Construct a circle with radius equal to 3cm. Draw two tangents to it inclined at an angle of 60 at their point of intersection. Measure their lengths and verify the results by calculation.
A
Bymeasurement:120o.Bycalculation:60o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Bymeasurement:60o.Bycalculation:120o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Bymeasurement:60o.Bycalculation:60o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Bymeasurement:120o.Bycalculation:120o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CBymeasurement:60o.Bycalculation:60o Oisthecentreofacircleofradius3cm.Toconstruct−twotangentsPA&PBtothecirclesuchthat∠APB=60o.Construction−(I)Acircleofradius3cmwithcentreOisdrawn.(II)OnanyradiusOAanangleOAB=30oisconstructed.ABmeetsthecircumferenceatB.(III)WejoinOB.(IV)AtA&BweconstructtwoperpendicularsAP&BP,suchthatOA⊥AP&OB⊥BP.AP&BPintersectatP.Themeasurementof∠ABP=60o.ThenPA&PBaretherequiredtangentstothegivencircle.Justification−Byconstruction,OA⊥AP&OB⊥BPandOA&OBareradii.∴PA&PBaretangentstothegivencirclefromPatA&Brespectively.(sincetheradiusthroughthepointofcontactofatangenttoacircleisperpendiculartothetangent.)InΔOABOA=OB(radiiofthesamecircle.∴ΔOABisisosceleswithABasbase.i.e∠OAB=∠OBA=30o.NowOA⊥AP&OB⊥BP⟹∠OBP=∠OAP=90o.∴∠ABP=∠OBP−∠OBA=90o−30o=60oand∠BAP=∠OAP−∠OAB=90o−30o=60o.So,inΔAPB∠APB=180o−(∠ABP+∠BAP)=180o−(60o+60o)=60o.(byanglesumpropertyoftriangles).So∠APB=60obymeasurementaswellasbyreason.Ans−OptionC