Constructing Perpendicular to a Line through a Point on the Line
Construct a t...
Question
Construct a tangent to a circle of radius 3cm from a point on the concentric circle of radius 5cm and measure its length. Also verify the measurement by actual calculation.
A
5cm,verified
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4cm,verified
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
5cm,can′tbeverified
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3cm,verified
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B4cm,verified Toconstruct−twoconcentriccircleswithradii3cm&5cmandtodrawatangentfromapointAonthecircumferenceoftheoutercirletotheinnercircle.Alsotomeasurethelengthofthistangentandjustifytheresultbycalculation.Construction−(I)TakingOascentreandradii3cm&5cm,twoconcentriccirclesaredrawn.(II)WetakeanypointAonthecircumferenceoftheoutercircleandjoinAO.(III)TakingAOasdiameter,asemicircleAPBisdrawnonAO.ThesemicircleAPBintersectstheinnercircleatP.(IV)APisjoined.(V)APismeasured.AP=4cm.Justification−OPisaradiusofthegiveninnercircleanditisanangleinthesemicircleAPB.∴∠OAP=90o⟹OP⊥AP.Nowweknowthatheradius,throughthepointofcontactofatangenttoacircle,isperpendiculartothetangent.∴APisatangenttothegiveninnercircle.∴APistherequiredtangent.AgainΔOAPisarightonewithOAashypotenusesince∠OAP=90o.So,byPythagorastheorem,AP=√OA2−OP2=√52−32cm=4cm.So,thelengthofthetangent=AP=4cmbyactualmeasurementaswellasbylogicalarguments.Ans−OptionB.