Construct the cell corresponding to the reaction:
3Cr2+(aq, 1 M)→2Cr3+(aq, 1 M)+Cr(s) and predict if the reaction is spontaneous or not. Also calculate ΔH and ΔS of the reaction at 25∘C.
Given: ECr3+(aq)/Cr(aq)=0.5VECr3+(aq)/Cr2+(aq)=−0.41V
ΔG of the reaction at 35∘C=−270.50 kJ
Cr2+(aq, 1 M), Cr3+(aq 1 M)||Cr2+(aq 1 M)|Cr(s)
I. Cr3+(aq)+3e−→Cr(s); ΔG0I=−3FE0Cr3+(aq)/Cr(s)
II. Cr3+(aq)+e−→Cr2+(aq); ΔG0II=−FE0Cr3+(aq),Cr2+(aq)
Eq. I−Eq. II,Cr2+(aq)+2e−→Cr(s); ΔG0=(−3×0.5F)−0.41F=−1.91F
ΔG0=−2FE0Cr2+(aq)/Cr(s)=−1.91F
∴E0Cr2+(aq)/Cr(s)=1.912=0.955 V
E0Cell=E0Cr2+(aq)/Cr(s)−E0Cr3+(aq),Cr2+(aq)=0.955+0.41=1.365 V
ΔG0=−nFE0Cell=−2×96500×1.365 J=−263.44 kJ
Since, ΔG0 is −ve hence the given reaction is spontaneous.
From Gibbs-Helmholtz equation,
ΔG=ΔH+T[∂(ΔG)∂T]p
−263.44=ΔH+298(−270.50+263.44)10=ΔH−(298×0.706)
∴ ΔH=−53.05 kJ
ΔG=ΔH−TΔS