Construct the graph of the function given below:f(x)=⎧⎪
⎪⎨⎪
⎪⎩x−1,x<014,x=0x2,x>0 Find f(x) and limx→0−f(x).
Open in App
Solution
The graph consists of the straight line y=x−1 for x<0, the point (0,1/4) and the parabola y=x2forx>0. Now limx→0+f(x)=limh→0(0+h)2=0 and limx→0−f(x)=limh→0(0−h−1)=−1. Since limx→0+f(x)≠limh→0−f(x), the function f(x) is discontinuous atx=0.