Givenline:x+y−5=0circleequ:x2+y2−2x−4y+3=0wetake,2gx=−2xg=−12fy=−4yf=−2centre(−g−f)=(1,2)radius:√g2+f2−c=√1+4−30=√2Now,perpendicularfromcentretox+y−5=0equaltoradiusofcircle.P=|1+2−5|√2=2√2=√2hence,thelinetouchesinthecircle.letthepoint(h,k)andcentrebeC,so,PC⊥tox+y−5=0∣∣PC=k−2h−1⇒y=−x+5=−1⇒k−2h−1×−1=−1⇒k−2=h−1⇒k−h=1−−−−−−−−−−(I)alsoh,klieontheline,so:h+k=5−−−−−−−−−−(2)solvingequ(1)&(2)2k=6k=3,h=2Hence,pointisP(2,3)