Let z=(1+7i)(2−i)2=(1+7i)(4+i2−4i)=(1+7i)(3−4i)×(3+4i)(3+4i)
⇒z=(1+7i)(3+4i)(9+16)=−25+25i25=(−1+i)
Let its polar form be z=r(cos θ+isin θ).
Now, r=|z|=√(−1)2+12=√2
Let α be the acute angle, given by
tan α=∣∣Im(z)Re(z)∣∣=∣∣1−1∣∣=1⇒α=π4
Clearly, the point representing z=(-1+i) is P(-1,1), which lies in the second quadrant.
∴arg(z)=θ=(π−α)=(π−π4)=3π4
Thus, r=|z|=√2 and θ=3π4
Hence, The required polar form is z=√2(cos 3π4+isin 3π4)