Convert the complex number z=-1-i in to the polar form.
Here z=−1−i=r(cos θ+i sin θ)
⇒r cos θ=−1 and r sin θ=−1 …i
Squaring both sides of (i) and adding
r2(cos2 θ+sin2 θ)=1+1
⇒ r2=2 ⇒ r=√2
∴ √2 cos θ=−1 and √2sin θ=−1
⇒ cos θ=−1√2 and sin θ=−1√2
Since sin θ and cos θ are both negative
∴ θ lies in third quadrant
∴ θ=(−π+π4)=−3π4
Hence polar form of z is
√2[cos(−3π4)+i sin(−3π4)].