Convert the complex numbers in to the polar form:
-i +i
Here z=−1+i=r(cos θ+i sin θ)
⇒r cos θ=−1 and r sin θ=1 …i
Squaring both sides of (i) and adding
r2(cos2 θ+sin2 θ)=1+1
⇒ r2=2 ⇒ r=√2
∴ √2 cos θ=−1 and √2sin θ=1
⇒ cos θ=−1√2 and sin θ=1√2
Since sin θ is positive and cos θ is negative
∴ θ lies in second quadrant
∴ θ=(π−π4)=3π4
Hence polar form of z is
√2(cos3π4+i sin3π4).