Polar form of √3+i
Step 1: Given z=√3+i
Step 2: Modulus of complex number
r=√x2+y2
⇒r=√(√3)2+(1)2⇒r=2
∴ Modulus r=2
Step 3: ∵z lies in the first quadrant.
∴Argument =tan−1∣∣yx∣∣=tan−1∣∣∣1√3∣∣∣=π6
∴ Argument=π6
Step 4 : Polar form : z=r(cosθ+i sinθ)
z=2(cos(π6)+i sin(π6))
Polar form of complex number √3+i is 2(cos(π6)+i sin(π6))