Convert the following in the polar form:
(i) 1+7i(2−i)2
(ii) 1+3i1−2i
(i) 1+7i(2−i)2=1+7i4+i2−4i
=1+7i3−4i×3+4i3+4i=3+4i+21i+28i29−16i2
=−25+25i25=−1+i
Let z=−1+i=r(cos θ+i sin θ)
⇒r cos θ=−1 and r sin θ=1 …(i)
Squaring both sides of (i) and adding
r2(cos2 θ+sin2 θ)=1+1
⇒ r2=2 ⇒ r=√2
∴ √2cos θ=−1 and √2 sin θ=1
⇒ cos θ=−1√2 and sin θ=1√2
Since sin θ is positive and cos θ is negative
∴ θ lies in the second quadrant
∴ θ=π−π4=3π4
Hence polar form of z is √2(cos3π4+i sin3π4)
(ii) 1+3i1−2i×1+2i1+2i=1+2i+3i+6i21−4i2=−5+5i5=−1+i
Let z=−1+i=r(cos θ+i sin θ)
⇒ rcos θ=−1 and r sin θ=1 …(i)
Squaring both sides of (i) and adding
r2(cos2 θ+sin2 θ)=1+1
⇒ r2=2 ⇒ r=√2
∴ √2cos θ=−1 and √2 sin θ=1
⇒ cos θ=−1√2 and sin θ=1√2
Since sin θ is positive and cos θ is negative
∴ θ lies in second quadrant
∴ θ=π−π4=3π4
Hence polar form of z is √2(cos3π4+i sin3π4)