i 5×6×7×8×9×10=1×2×3×4×5×6×7×8×9×101×2×3×4 =10!4! ii 3×6×9×12×15×18=3×1×3×2×3×3×3×4×3×5×3×6 =361×2×3×4×5×6 =366! iii n+1n+2n+3...2n=123...nn+1n+2n+3...2n123...n =2nn! iv 135.........2n-1 =135.........2n-1246.........2n246.........2n =12345.........2n-12n2n123.........n =2n!2nn!
Convert the following products into factorials: (i) 5.6.7.8.9.10 (ii) 3.6.9.12.15.18 (iii) (n+1)(n+2)(n+3) ...(2n) (iv) 1.3.5.7.9 ...(2n-1)
Verify the following :
(i) 37×(56+1213)=(37×56)+(37×1213) (ii) −154×(37+−125)=(−154×37)+(−154×−125) (iii) (−83+−1312)×56=(−83×56)+(−1312×56) (iv) −167×(−89+−76)=(−167×−89)+(−167×−76)
(1+31)(1+54)(1+79)⋯(1+(2n+1)n2)=(n+1)2
Re-arrange suitably and find the sum in each of the following :
(i)1112+−173+112+−252
(ii)−67+−56+−49+−157
(iii)35+73+95+−1315+−73
(iv) 413+−58+−813+913
(v)23+−45+13+25
(vi) 18+512+27+712+97+−516