Convert the given complex number in polar form: -3
z = -3
Let rcosθ=−3 and rsinθ=0
On squaring and adding, we obtain
r2cos2θ+r2sin2θ=(−3)2⇒r2(cos2θ+sin2θ)=9⇒r2=9⇒r=√9=3 [Conventionally, r>0]∴3 cosθ=−3 and 3 sinθ=0⇒cosθ=−1 and sinθ=0∴θ=π∴−3=r cosθ+i rsinθ=3 cosπ+i 3 sinπ=3(cosπ+i sinπ)
This is the required polar form.