Given, z=−(1−i)
Let rcosθ=1 and rsinθ=−1
On squaring and adding, we obtain
r2cos2θ+r2sin2θ=12+(−1)2
⇒r2(cos2θ+sin2θ)=1+1
⇒r2=2
⇒r=√2 (Conventionally r>0 )
∴√2cosθ=1 and √2sinθ=−1
⇒cosθ=1√2 and sinθ=−1√2
∴θ=−π4 [As θ lies in the Ii quadrant]
So, the polar form of z=−(1−i) is
∴−(1−i)=−(rcosθ+irsinθ)=−(√2cos(−π4)+i√2sin(−π4))
=−√2[−cos(3π4)−isin(3π4)]
=√2[cos(3π4)+isin(3π4)]