Convert the given complex number in polar form: √3+i
z=√3+i
Let rcosθ=√3 and rsinθ=1
On squaring and adding, we obtain
r2cos2θ+r2sin2θ=(√3)2+(1)2⇒r2(cos2θ+sin2θ)=3+1⇒r2=4⇒r=√4=2 [Conventionally, r>0]∴2cosθ=√3 and 2sinθ=1⇒cosθ=√32 and sinθ=12∴θ=π6 [As θ lies in the I quadrant]∴√3+i=rcosθ+irsinθ=2cosπ6+i2sinπ6=2(cosπ6+isinπ6)
This is the required polar form.