The correct option is D (−5,−2)
Equation of the ellipse is:
x237+y2(373)=1
The equation of the normal at point P(√37cosθ,√373sinθ) is :
(√37secθ)x−(√373 cosec θ)y=37−373
⇒(√37secθ)x−(√373 cosec θ)y=743 …(1)
If the normal is parallel to the line 6x−5y=2, then
⇒65=√3tanθ
⇒cosθ=5√37, sinθ=2√3√37
or
⇒cosθ=−5√37, sinθ=−2√3√37
Hence, point P can be (5,2) or (−5,−2).
Alternate Solution:
Equation of normal on x2+3y2=37 will be
y=mx±(a2−b2)m√a2+b2m2
∵ Normal is parallel to 6x−5y=2
∴m=65
Hence, normal will be
5y=6x±30(37−37/3)37⇒37x±5−(37/3)×y±2=743
Equation of normal
a2xx1−b2yy1=a2−b2
Hence, point of contact will be
(5,2) and (−5,−2)