The correct option is
B (x−5)225+y216=1Given that A,B and C are vertices of a
△ABC
The coordinate of B and C are (2,0) and (8,0)
∴ a=8−α=6 units
we can assume the coordinate of A to be (x,y)
⇒b=√(x−2)2+y2,c=√(x−8)2+y2
From half angle formulas
tanB2=√(s−a)(s−c)s(s−b) and tanc2=√(s−a)(s−b)s(s−c)
s=a+b+c2 i.e, perimeter.
Given that 4tanB2tanC2=1
⇒4√(s−a)(s−c)s(s−b)√(s−a)(s−b)s(s−c)=1
Squaring on both side,
16[(s−a)(s−c)s(s−b)][(s−a)(s−b)s(s−c)]=1=16(s−b)2s2[(s−c)(s−a)(s−a)(s−c)]=1⇒16(s−b)2=s2
taking root,4(s−b)=s
⇒ 3s-4b=0
Substituting value ofs=s=a+b+c2
3[a+b+c2]−4b=0⇒3a−5b+3c=0
substituting the values of a,b and c
3×6−5√(x−8)2+y2+3√(x−2)2+y2=0∴18−5√(x−8)2+y2+3√(x−2)2+y2=0,
The Locus of A