The correct options are
A 2sin−1√1−x2 C 2cos−1√1+x2Let cos−1x=y, so that x=cosy. Then
⇒√1−x2=√1−cosy2=
⎷2sin2(y2)2=siny2
⇒sin−1√1−x2=y2⇒2sin−1√1−x2=y
Also √1+x2=√1+cosy2=
⎷2cos2(y2)2=cosy2
⇒cos−1√1+x2=y2⇒2cos−1√1+x2=y
∴y=cos−1x=2sin−1√1−x2=2cos−1√1+x2