cos276°+cos216°-cos76°cos16°=
-14
12
0
34
Explanation for the correct option:
Simplify the series using Trigonometric identities
cos276°+cos216°-cos76°cos16°=12[2cos276°+2cos216°-2cos76°cos16°]=12[1+cos2×76°+1+cos2×16°-2cos76°cos16°][∵2cos2A=1+cos2A]=12[2+cos152°+cos32°-cos76°+16°-cos76°-16°][∵2cosAcosB=cosA+B+cosA-B]=12[2+2cos(152°+32°2)cos(152°-32°2)-cos92°-cos(60°)][∵cosC+cosD=2cosC+D2cosC-D2]=12[2+2cos(92°)cos(60°)-cos92°-cos(60°)]=12[2+2cos(92°)×12-cos92°-12)]=12[2+cos(92°)-cos92°-12)]=12[2-12]=12×32=34
Therefore, Option(D) is correct.
[13+(-12)]+=+[(-12)+(-7)]