cos2α+cos2α+120°+cos2α-120° is equal to
32
1
12
0
Explanation for correct option:
Simplify the series using Trigonometric identity:
cos2α+cos2α+120°+cos2α-120°=cos2α+[cosα+120°]2+[cosα-120°]2=cos2α+[cosαcos120°-sinαsin120°]2+[cosαcos120°+sinαsin120°]2[∵cosC+D=cosCcosD-sinCsinD]=cos2α+[cosα×-12-sinα32]2+[cosα-12+sinα32]2[∵cosC-D=cosCcosD+sinCsinD]=cos2α+cos2α4+3sin2α4+3sinαcosα2+cos2α4+3sin2α4-3sinαcosα2=3cos2α2+3sin2α2=32[cos2α+sin2α]=32
Therefore, Option(A) is the correct answer.