wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos 2θ cos 2ϕ + sin2(θ – ϕ) – sin2(θ + ϕ) is equal to
(a) sin 2 (θ + ϕ)
(b) cos 2 (θ + ϕ)
(c) sin 2 (θ – ϕ)
(d) cos 2 (θ – ϕ)

Open in App
Solution

cos 2θ cos 2ϕ+sin2θ-ϕ-sin2θ+ϕ=cos 2θ cos 2ϕ+sinθ-ϕ+θ+ϕ sinθ-ϕ-θ-ϕ using identity sin2A-sin2B=sinA+B sinA-B=cos 2θ cos 2ϕ+sin2θ sin-2ϕ=cos 2θ cos 2ϕ-sin 2θ sin 2ϕ sin-x=-sinx=cos2θ+2ϕ using identity: cosa cosb-sina sinb=cosa+b= cos 2θ+ϕHence, the correct answer is option B.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Trigonometry
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon