The correct option is
B 0The value of
(cos2θ−1)(cot2θ+1)+1 is
=cos2θ.cot2θ+cos2θ−cot2θ−1+1
=cos4θsin2θ+cos2θ−cos2θsin2θ
=cos4θ+cos2θ.sin2θ−cos2θsin2θ
=cos2θ(cos2θ+sin2θ−1)sin2θ
=cos2θ(1−1)sin2θ .... [ Since sin2θ+cos2θ=1]
=0
Hence, option D is correct.