cos2θ+cos2(α+θ)−2cosαcosθcos2(α+θ)
=cos2θ+cos(α+θ)[cos(α+θ)−2cosαcosθ]
=cos2θ+cos(α+θ)[cosαcosθ−sinαsinθ−2cosαcosθ]
=cos2θ−cos(α+θ)[cosαcosθ+sinαsinθ]
=cos2θ−cos(α+θ)cos(α−θ)
=cos2θ−[cos2α−sin2θ]=cos2θ+sin2θ−cos2α
=1−cos2α, which is independent of θ
Ans: 7