cos2(θ+Φ)+4cos(θ+Φ)sinθsinΦ+2sin2Φ=?
cos2θ
cos3θ
sin2θ
sin3θ
Explanation for the correct option:
Step 1. solve the given equation:
cos2(θ+ϕ)+4cos(θ+ϕ)sinθsinϕ+2sin2ϕ
=2cos2(θ+ϕ)−1+4cos(θ+ϕ)sinθsinϕ+2sin2ϕ ; ∵cos2θ=2cos2θ-1
=2cos(θ+ϕ)cos(θ+ϕ)+2sinθsinϕ−1+2sin2ϕ
Step 2. Use formula 2sinAsinB=cos(A-B)-cos(A+B),1-2sin2θ=cos2θ
=2cos(θ+ϕ)cos(θ+ϕ)+cos(θ−ϕ)−cos(θ+ϕ)−cos2ϕ
=2cos(θ+ϕ)cos(θ−ϕ)−cos2ϕ
Step 3. Use formula 2cosAcosB=cos(A+B)+cos(A-B)
=cosθ+ϕ+θ-ϕ+cosθ+ϕ-θ+ϕ−cos2ϕ
=cos2θ+cos2ϕ−cos2ϕ
=cos2θ
Hence, Option ‘A’ is Correct.