cos(x)[cos(x)−2]=2sin(x)[2−cos(x)]
Or
cos(x)[cos(x)−2]+2sin(x)[cos(x)−2]=0
Or
(cos(x)−2)(cos(x)+2sin(x))=0
Now
cos(x)=2 is not possible.
Hence
cos(x)=−2sin(x)
Or
tan(x)=−12.
Or
2tan(x2)1−tan2x2=−12.
Or
4tan(x2)=−1+tan2x2.
tan2x2−4tan(x2)−1=0
Or
tan(x2)=4±√16+42
=2±√5