cos(2π7)+cos(4π7)+cos(6π7)=?
Is equal to zero
Lies between0&3
Is a negative number
Lies between 3&6
Finding the value for cos(2π7)+cos(4π7)+cos(6π7):
given,
Multiply and divide by 2sin(π7)
cos2π7+cos4π7+cos6π7=2sinπ7cos2π7+2sinπ7cos4π7+2sinπ7cos6π72sinπ7
Using formula 2sinxcosy=sin(x+y)+sin(x–y)
2sinπ7cos2π7+2sinπ7cos4π7+2sinπ7cos6π72sinπ7=sin3π7+sin-π7+sin5π7+sin-3π7+sinπ+sin-5π72sin(π7)=sin3π7-sinπ7+sin5π7-sin3π7+sinπ-sin5π72sinπ7=-sinπ72sinπ7=-12
Hence, correct option is (C)
Fill in the blanks with >,< or =
-4+-7____-4--7