On expanding and using
the compound angle formula, we get
cosx+cos(x+1200)+cos(1200−x)=0 - (i)
We have,
a3+b3+c3=3abc if a+b+c=0
- (ii)
Let S=cos3x+cos3(1200−x)+cos3(1200+x)
⇒S=3cosx×cos(1200−x)×cos(1200+x) (From (i),
(ii) )
⇒S=3cosx×(−12cosx+√32sinx)×(−12cosx−√32sinx)
⇒S=34(4cos3x−3cosx)
⇒S=34cos(3x)
cos3x can acquire values from [−1,1]
Hence, the range of S is [ −34,34]