cos6θ+cos4θ+cos2θ+1=0⇒(cos6θ+cos2θ)+cos4θ+1=0⇒(2cos4θ.cos2θ)+(cos4θ+1)=0⇒2cos4θ.cos2θ+2cos22θ=0⇒2cos2θ[cos4θ+cos2θ]=0⇒2cos2θ[2cos3θ.cosθ]=0⇒∴2cos2θ=0,2θ=(2n+1)π2,θ=(2n+1)π4⇒or2cos3θ=0,3θ=(2k+1)π2,θ=(2k+1)π6⇒orcosθ=0,θ=(2P+1)π2Where,n,k,P∈IHenceθ=(2P+1)π2.