Given that cos(α−β)=1 and cos (α+β)=1e
Where α,β∈[−π,π]
Now cos(α−β)=1⇒α−β=0 or α=β
∴cos(α+β)=1e⇒cos2α=1e
∵0<1e<1 and 2α∈[−2π,2π]
There will be two values of 2α satisfying cos2α=1ein[0,2π] and two in [−2π0]
Therefore, there will be four values of αin[−2π,2π] and correspondingly four values of \beta. Hence, there are four sets of (α,β).