The correct option is B Is a negative number
Let 2πr7=θ
⇒2πr=3θ+4θ
⇒4θ=2πr−3θ
⇒sin4θ=sin(2πr−3θ)
⇒sin4θ=−sin3θ
⇒2sin2θcos2θ=−[3sinθ−4sin3θ]
⇒2×2sinθcosθ(2cos2θ−1)=−3sinθ+4sin3θ
⇒sinθ[8cos3θ−4cosθ+3−4(1−cos2θ)]=0
⇒8cos3θ+4cos2θ−4cosθ−1=0 .......(i)
Thus, cos2π7,cos4π7 and cos6π7 are the roots of the above equation.
∴cos2π7+cos4π7+cos6π7=−12