wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos E-)c cos E-y -sin E-x sin 2-y =sin(x+y)4 4 4 4

Open in App
Solution

Simplifying the L.H.S by multiplying and dividing by 2,

cos( π 4 x )cos( π 4 y )sin( π 4 x )sin( π 4 y ) = 1 2 [ 2cos( π 4 x )cos( π 4 y ) ]+ 1 2 [ 2sin( π 4 x )sin( π 4 y ) ]

Use trigonometric identity 2cosAcosB=cos( A+B )+cos(AB) and 2sinAsinB=cos( A+B )cos( AB ) in the above expression.

= 1 2 [ cos{ ( π 4 x )+( π 4 y ) } +cos{ ( π 4 x )( π 4 y ) } ]+ 1 2 [ cos{ ( π 4 x )+( π 4 y ) } cos{ ( π 4 x )( π 4 y ) } ] = 1 2 cos{ ( π 4 x )+( π 4 y ) }+ 1 2 cos{ ( π 4 x )( π 4 y ) } + 1 2 cos{ ( π 4 x )+( π 4 y ) } 1 2 cos{ ( π 4 x )( π 4 y ) } =2× 1 2 [ cos{ ( π 4 x )+( π 4 y ) } ] =cos[ π 2 ( x+y ) ] =sin( x+y )=R.H.S

L.H.S. = R.H.S.

Hence, the expression has been proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon