wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: cos2π15cos4π15cos8π15cos16π15=116

Open in App
Solution

We know that,

sin(a+b)=sinacosb+sinbcosa (1)

For a=b,

sin2a=2sinacosa (2)

Let a=16π15 (3)

From (2), we have

sin2a=2sinacosa

=2(sina)cosa

=2(2sina2cosa2)cosa

=4sina2cosa2cosa

=4(sina2)cosa2cosa

=4(2sina4cosa4)cosa2cosa

=8sina4cosa4cosa2cosa

=8(sina4)cosa4cosa2cosa

=8(2sina8cosa8)cosa4cosa2cosa

=16sina8cosa8cosa4cosa2cosa (5)

Since, a=16π15

So, sin2a=sin(216π15)=sin(32π15)=sin(2π+2π15)=sin2π15 [Since sin(2π+θ)=sinθ]

and sina8=sin(16π158)=sin2π15

On substituting sin2a and sina8 in (5), we get

sin2π15=16sin2π15cosa8cosa4cosa2cosa

1=16cosa8cosa4cosa2cosa

cosa8cosa4cosa2cosa=116

Now substituting a with 16π15, we get

cos16π158cos16π154cos16π152cos16π15=116

cos2π15cos4π15cos8π15cos16π15=116 Proved


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon