Prove: cos2π15cos4π15cos8π15cos16π15=116
We know that,
sin(a+b)=sinacosb+sinbcosa (1)
For a=b,
sin2a=2sinacosa (2)
Let a=16π15 (3)
From (2), we have
sin2a=2sinacosa
=2(sina)cosa
=2(2sina2cosa2)cosa
=4sina2cosa2cosa
=4(sina2)cosa2cosa
=4(2sina4cosa4)cosa2cosa
=8sina4cosa4cosa2cosa
=8(sina4)cosa4cosa2cosa
=8(2sina8cosa8)cosa4cosa2cosa
=16sina8cosa8cosa4cosa2cosa (5)
Since, a=16π15
So, sin2a=sin(2⋅16π15)=sin(32π15)=sin(2π+2π15)=sin2π15 [Since sin(2π+θ)=sinθ]
and sina8=sin(16π158)=sin2π15
On substituting sin2a and sina8 in (5), we get
⇒sin2π15=16sin2π15cosa8cosa4cosa2cosa
⇒1=16cosa8cosa4cosa2cosa
⇒cosa8cosa4cosa2cosa=116
Now substituting a with 16π15, we get
⇒cos16π158cos16π154cos16π152cos16π15=116
⇒cos2π15cos4π15cos8π15cos16π15=116 Proved