cosπ7. cos3π7. cos5π7 are the roots of the equation 8x3−4x2−4x+1=0. Then the value of sinπ14.sin3π14.sin5π14 is
18
8x3−4x2−4x+1
=8(x−cosπ7)(x−cos3π7)(x−cos5π7)
Put x = 1, then
1=8(1−cosπ7)(1−cos3π7)(1−cos5π7)
=1=8(2 sin2π14)(2 sin23π14)(2 sin25π14)
∴sin(π14)(sin 3π14)(sin5π14)=18