cos[tan−1{sin(cot−1x)}] is equal to
x
Let cot−1x=θ⇒cotθ=x ∴sin(cot−1x)=sinθ=1cosec θ=1√1+cot2 θ =1√1+x2 Thus, cos[tan−1[sin(cot−1x)]]=cos[tan−11√1+x2] =cosφ(Put tan−1{1√1+x2}=φ⇒tanφ=1√1+x2) =1secϕ=1√1+tan2φ =1√1+11+x2=√1+x22+x2