cosπ11+cos3π11+cos5π11+cos7π11+cos9π11=?
-12
12
1
-1
Explanation for the correct option:
Given, cosπ11+cos3π11+cos5π11+cos7π11+cos9π11
Multiply and divide it by 2sinπ11,
=12sinπ112sinπ11cosπ11+2sinπ11cos3π11+2sinπ11cos5π11+2sinπ11cos7π11+2sinπ11cos9π11 use the identity 2sinAcosB=sin(A+B)+sin(A-B)
=12sinπ11sin2π11+sin4π11–sin2π11+sin6π11–sin4π11+sin8π11–sin6π11+sin10π11-sin8π11
=12sinπ11×sin10π11
=12sinπ11×sinπ–π11
=12sinπ11×sinπ11 ; ∵sin(π-θ)=sinθ
=12
Hence, Option ‘B’ is Correct.
Question 12
(−11)×7 is not equal to
(a) 11×(−7) (b) −(11×7) (c) (−11)×(−7) (d) 7×(−11)