The correct options are
A x2−1=0
C x4−4x2+2=0
cosθcos2θcos3θ=14(0≤θ≤π)
⇒2cos2θ(cos4θ+cos2θ)=1
⇒2cos2θcos4θ+2cos22θ=1
⇒cos4θ(2cos2θ+1)=0
⇒ Either cos4θ=0,orcos2θ=−12.
cos4θ=0⇒θ=(2n+1)π/8nεI.
⇒θ=π8,3π8,5π8,7π8 as0≤θ≤π and
cos2θ=−12
⇒θ=π3 and 2π3 again as 0≤θ≤π
Next, let x=2cosα, where α is a root of the equation, i.e., either cos4α=0 or cos2α=−12.
So, x2=4cos2α=2(1+cos2α)=1
If cos2α=−12 ⇒2cosα is a root of the equation x2−1=0, or
x2−2=2cos2α ⇒(x2−2)2=4cos22α=2(1+cos4α)=2, if cos4α=0⇒x4−4x2+2=0⇒2cosα is a root of the equation x4−4x2+2=0.
Hence, options A and C are the correct answers.