Let P(n) be true for n=m
∴(cosθ+isinθ)m+1
=(cosθ+isinθ)m(cosθ+isinθ)
=(cosmθ−isinmθ)(cosθ+sinθ)
=(cosmθcosθ−sinmθsinθ)+i(sinmcosmθsinθ)
=cos(m+1)θ+isin(m+1)θ
Above relation shows that P(n) is true for n=m+1
Again when n=1
(cosθ+isinθ)1=cos1.0+isinθ
when n=2,(cosθ+isinθ)2
cos2θ+i2sinθ+2isinθcosθ
(cos2θ+sinθ)+i(2sinθcosθ)
=cos2θ+isin2θ
Above relation shows that P(n) is true for n=1,2
Hence P(n) is universally true