wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(cosθ+isinθ)n=cosθ+isinnθ

Open in App
Solution

Let P(n) be true for n=m
(cosθ+isinθ)m+1
=(cosθ+isinθ)m(cosθ+isinθ)
=(cosmθisinmθ)(cosθ+sinθ)
=(cosmθcosθsinmθsinθ)+i(sinmcosmθsinθ)
=cos(m+1)θ+isin(m+1)θ
Above relation shows that P(n) is true for n=m+1
Again when n=1
(cosθ+isinθ)1=cos1.0+isinθ
when n=2,(cosθ+isinθ)2
cos2θ+i2sinθ+2isinθcosθ
(cos2θ+sinθ)+i(2sinθcosθ)
=cos2θ+isin2θ
Above relation shows that P(n) is true for n=1,2
Hence P(n) is universally true

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon