The correct option is D 14
cosx+cosy+cosz=0=sinx+siny+sinz
⇒cosx+cosy=−cosz ...(1)
sinx+siny=−sinz ...(2)
Squaring and adding eq. (1) & eq. (2) we get,
cos2x+cos2y+2cosxcosy+sin2x+sin2y+2sinxsiny
=cos2z+sin2z⇒1+1+2(cosxcosy+sinxsiny)=1
⇒cos(x−y)=−12
⇒2cos2(x−y2)−1=−12
⇒cos2(x−y2)=14