We have 0 < x < π, So from first quadrant, we get minimum value of cos x+sin x is 1, as in first quadrant we know 0<x<π2
And
We have cos x+sin x=12
Taking whole square on both hand side, we get
(cos x+sin x)2=14⇒sin2x+cos2x+2sin x cos x=14⇒1+sin 2x=14(Asweknowsin2x+cos2x=1and2sin x cos x=sin 2x)⇒sin 2x=14−1⇒sin 2x=−34
sin22x+cos22x=1, Substitute value, we get
⇒(−34)2+cos22x=1⇒cos22x=1−916⇒cos22x=716⇒cos2x=√716⇒cos2x=√74
And we know sin 2x=2 tan x1+tan2xAndcos 2x=1−tan2x1+tan2x, so we get
tan x=sin 2x1+cos 2x, Substitute values, we get
⇒tan x=−341+√74⇒tan x=−344+√74⇒tan x=−34+√7⇒tan x=−34+√7×4−√74−√7⇒tan x=−12+3√716−7⇒tan x=−3(4−√7)9⇒tan x=−(4−√7)3