wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos x1-sin x3 2+sin x dx

Open in App
Solution

We have, I=cos x1-sin x3 2+sin x dxLet, sinx=tcosx dx=dtNow, integration becomes,I=dt1-t3 2+t =-dtt-13 t+2 Let, 1t-13 t+2=At-1+Bt-12+Ct-13+D t+2 .....11=At-12t+2+Bt-1t+2+Ct+2+Dt-13 .....2

Putting t=1 in 2, we get1=3CC=13Putting t=-2 in 2, we get1=D-2-131=-27DD=-127Putting t=0 in 2, we get1=2A-2B+2C-D1=2A-2B+23+1272A-2B=827A-B=427Putting t=2 in 2, we get1=4A+4B+4C+D1=4A+4B+43-127A+B=-227Now, A-B=427 and A+B=-227 A=127 and B=-19
Substituting the values of A, B, C and D in 1, we get1t-13 t+2=127t-1-19t-12+13t-13+-1 27t+2Now, integration becomes I=-127t-1-19t-12+13t-13+-1 27t+2dt =-127log t-1+19t-1-16t-12-127log t+2+C =-127log sin x-1-19sin x-1+16sin x-12+127log sin x+2+C =-127log 1-sin x+191-sin x+161-sin x2+127log 2+sin x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon