The integral is given as follows,
I= ∫ cosxdx ( 1−sinx )( 2−sinx )
Assume sinx=t
Differentiate the above with respect to t.
cosxdx=dt
Substitute the values in the integral.
I= ∫ cosxdx ( 1−sinx )( 2−sinx ) I= ∫ dt ( 1−t )( 2−t )
Use partial fraction rule.
1 ( 1−t )( 2−t ) = A ( 1−t ) + B ( 2−t ) 1=A( 2−t )+B( 1−t )
Substitute t=1 then,
A=1
Again substitute t=2then,
B=−1
On integrating, we get
I= ∫ dt ( 1−t )( 2−t ) = ∫ dt ( 1−t ) − ∫ dt ( 2−t ) =−log| 1−t |−( −log| 2−t | )+C =log| 1 1−t |+log| 2−t |+C
By substituting sinx for t, we get
I=log| 1 1−sinx |+log| 2−sinx |+C I=log| 2−sinx 1−sinx |+C