wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:

cos2θ(1tanθ)+sin3θ(sinθcosθ)=(1+sinθcosθ)

Open in App
Solution

LHS=cos2θ(1tanθ)+sin3θ(sinθcosθ)

=cos2θ(1sinθcosθ)+sin3θ(sinθcosθ) [tanθ=sinθcosθ]

=cos3θ(cosθsinθ)+sin3θ(sinθcosθ)

=1(cosθsinθ)[cos3θsin3θ]

=1(cosθsinθ)[(cos2θ+cosθsinθ+sin2θ)(cosθsinθ)] [(a3b3)=(ab)(a2+ab+b2)]

=[sin2θ+cos2θ+cosθsinθ]

=(1+sinθcosθ) [sin2θ+cos2θ=1 ]

=RHS

Hence, cos2θ(1tanθ)+sin3θ(sinθcosθ)=(1+sinθcosθ)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon