Prove:
cos2θ(1−tanθ)+sin3θ(sinθ−cosθ)=(1+sinθcosθ)
LHS=cos2θ(1−tanθ)+sin3θ(sinθ−cosθ)
=cos2θ(1−sinθcosθ)+sin3θ(sinθ−cosθ) [∵tanθ=sinθcosθ]
=cos3θ(cosθ−sinθ)+sin3θ(sinθ−cosθ)
=1(cosθ−sinθ)[cos3θ−sin3θ]
=1(cosθ−sinθ)[(cos2θ+cosθsinθ+sin2θ)(cosθ−sinθ)] [∵(a3−b3)=(a−b)(a2+ab+b2)]
=[sin2θ+cos2θ+cosθsinθ]
=(1+sinθcosθ) [∵sin2θ+cos2θ=1 ]
=RHS
Hence, cos2θ(1−tanθ)+sin3θ(sinθ−cosθ)=(1+sinθcosθ)