The given integral is, I= ∫ cos2x ( cosx+sinx ) 2 dx .
Solve the integral,
I= ∫ cos 2 x− sin 2 x ( cosx+sinx ) 2 dx = ∫ ( cosx+sinx )( cosx−sinx ) ( cosx+sinx )( cosx+sinx ) dx = ∫ ( cosx−sinx ) ( cosx+sinx ) dx
Let, ( cosx+sinx )=t.
Differentiate both sides with respect to t,
( cosx−sinx ) dx dt =1 ( cosx−sinx )dx=dt
Now, integral becomes,
I= ∫ dt t =log| t |+C (1)
Substitute value of t in equation (1),
I=log| ( cosx+sinx ) |+C
Thus, option (B) is correct.
Let f(x)=ax5+bx3+csinx+dtan3x−1 .
If f(−α)=−5, then f(α) equals