wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos3θ+sin3θcosθ+sinθ+cos3θ-sin3θcosθ-sinθ=2

Open in App
Solution

LHS=cos3θ+sin3θcosθ+sinθ+cos3θsin3θcosθsinθ =(cosθ+sinθ)(cos2θcosθsinθ+sin2θ)(cosθ+sinθ)+(cosθsinθ)(cos2θ+cosθsinθ+sin2θ)(cosθsinθ) =(cos2θ+sin2θcosθsinθ)+(cos2θ+sin2θ+cosθsinθ) =(1cosθsinθ)+(1+cosθsinθ) =2 =RHS
Hence, LHS= RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon