We have to prove that cos4x+cos3x+cos2x sin4x+sin3x+sin2x =cot3x.
The Left Hand Side of the equation.
L.H.S.= cos4x+cos3x+cos2x sin4x+sin3x+sin2x = { cos4x+cos2x }+cos3x { sin4x+sin2x }+sin3x
Use the formula.
sinA+sinB=2sin{ A+B 2 }cos{ A−B 2 } cosA+cosB=2cos{ A+B 2 }cos{ A−B 2 }
Simplify the Left Hand Side of the equation.
L.H.S.= 2cos{ 4x+2x 2 }cos{ 4x−2x 2 }+cos3x 2sin{ 4x+2x 2 }cos{ 4x−2x 2 }+sin3x = { 2cos3xcosx+cos3x } { 2sin3xcosx+sin3x } = cos3x{ 2cosx+1 } sin3x{ 2cosx+1 } =cot3x
Left hand side is equal to right hand side.
Hence proved.