cosα+cosβ=a, sinα+sinβ=b and α-β = 2θ. If cos3θcosθ= K, when a=13,b=12Find the value of
-36K.
We want to find cos3θcosθ . We will try to simplify this because cos3θ can be expressed in terms cos θ
⇒ cos3θcosθ=4cos3θ−3cosθcosθ=4cos2θ−3
We are given 2θ = α−β . So it is better to convert cos2θ in terms of cos2θ .
⇒ K = 4cos2θ−3
= 2(1+cos2θ)−3
We are given 2θ=α−β . So it is better to convert cos2θ in terms of cos2θ
⇒ K=4cos2θ−3
= 2(1 + cos2\theta) - 3\)
K = 2cos2θ - 1
Now, we have to find cos2θ or cos(α−β)
If we get expressions like
a=cosα+cosβ
and b=sinα+sinβ, one usual step is squaring and adding both. In our case we get one advantage also.
The left over terms will be cosαcosβandsinαsinβ. This will help us in finding cos (α−β) .
⇒ a2+b2 = 2 + 2 (cosαcosβ+sinαsinβ)
= 2 + 2 {cos (α−β)}
⇒ 2 cos (\alpha - \beta) = a2+b2−2
⇒ k+1 = a2+b2−2
⇒ k = (13)2+(12)2−3=−9536
⇒ - 36K = 95
Key steps / concepts: (1) simplifying cos3θcosθ
(2) Squaring and adding terms.