cosA=−1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
(i)sin(A+B)
(ii)cos(A+B)
(iii)tan(A+B)
We have,
cosA=−1213 and cotB=247
∴sinA=√1−cos2A=√1−(−1213)2
=√1−144169=√25169=513
and,
cosecB=−√1+cot2B
[∵ cosec is negative in third quadrant]
=−√1+(247)2=√1+57649
=−√49+57649=−√62549=−257
⇒sinB=−725 [∵cosecB=1sinB]
Now,
cosB=−√1−sin2B
[∵ cos θ is negative in third quadrant]
=−√1−(−725)2=−√1−49625
=−√625−49625=−√576625=−2425
Now,
sin(A+B)=sinAcosB+cosAsinB
=513×(−2425)+(−1213)×(−725)
=−120325+84325
=−120+84325
=−36325
(ii) We have,
cosA=−1213 and cotB=247
∴sinA=√1−cos2A=√1−(−1213)2
=√1−144169=√25169=513
and,
cosecB=−√1+cot2B
[∵ cosec is negative in third quadrant]
=−√1+(247)2=−√1+57649
=−√49+57649=−√62549=−257
⇒sinB=−725
Now,
cosB=−√1−sin2B
[∵ cos is negative in third quadrant]
−√1−(−725)2=−√1−49625
=−√625−49625=−√576625=−2425
Now,
cos(A+B)=cosAcosB−sinAsinB
=(−1213)×(−2425)−(513)×(−725)
=288325+35325
=323325