cosec15°-sec15° is equal to
22
6
26
6+2
Explanation for the correct option:
Step 1. Given cosec15°–sec15°
=1sin15°–1cos15°
=(cos15°–sin15°)(sin15°cos15°)
Step 2. Multiply and divide it by 2,
=2(cos15°–sin15°)(2sin15°cos15°)
=2(cos15°–sin15°)sin30° ; ∵2sinθcosθ=sin2θ
Step 3. Multiply and divide it by 2,
=2cosec30°×2×12cos15°–12sin15°
=2×2×2×[sin45°cos15°–cos45°sin15°] ; ∵cosec30°=2,sin45°=1√2,cos45°=-1√2
=42[sin(45°–15°)] ∵sinAcosB-cosAsinB=sin(A-B)
=42sin30°
=42×12
=22
Hence, Option ‘A’ is Correct.