cosecA-2cot2AcosA=?
2sinA
secA
2cosAcotA
None of these
Explanation for the correct option:
Step 1. Find the value of cosecA–2cot2AcosA
=cosecA–2cosAtan2A
Step 2. Use the identity tan2x=2tanx1–tan2x,
=cosecA–2cosA2tanA(1–tan2A)
=cosecA–cosAsinAcosA1-sin2Acos2A
=cosecA–[cosecAcos2A](cos2A–sin2A)cos2A
=cosecA–cosecA(cos2A–sin2A)
=cosecA[1–cos2A+sin2A]
Step 4. Using the identity sin2x+cos2x=1,
=cosecA[sin2A+sin2A]
=1sinA×2sin2A
=2sinA
Hence, Option ‘A' is Correct.